RAP/RAS Team Update
Jim Musselman
Florida DOT

$\stackrel{\vdash}{\circ}$
 ADDITIONAL SUPP

Tom Bennert

- Gerry Reinke

Mike Anderson

- -
- Geoff Rola Turner

FDDT Florida Department of Transportation

RAS binder?

- Quality of binder

Existing Approach (PP 78-14)	
- Binder quantity: - Uses RAS Binder Availa	Factor of $0.70-0.85$
- Binder quality:	
Recommended Virgin Asphalt Binder Grade	RAS or RAS + RAP Binder Percentage
No change	<15
One grade softer	15 to 25
Use blending charts	>25

Focus on critical low temperature difference
of the binder - ΔT_{c}
$-\Delta T_{c}=$ Stiffness critical temp (S) - the Relaxation
critical temp (m-value)

- Measured with the Bending Beam Rheometer
(BBR)
- Criteria: ΔT_{c} for the blended binder should be
greater than or equal to $-5.0^{\circ} \mathrm{C}$
- Binder is PAV aged for 40 hours
FDOT Florida Department of Transportation
Two Approaches

1. Binder Blending Procedure

- Agency sets allowable RAS tiers;
- Extract, recover, blend typical materials (RAS, RAP,
base binder, etc.) at varying percentages
• RASBR = 0.00, $0.15,0.30$
- PAV age the blended binder for 40 hours
- Test the blended binders to determine ΔT_{c}
- Set the allowable tiers based on the criteria that
ΔT_{c} must be greater than or equal to $-5.0^{\circ} \mathrm{C}$, and
the appropriate PG grade is met.

Default Options

$$
\begin{aligned}
& \text { A mixture performance test for cracking } \\
& \text { implemented by the State is acceptable in lieu } \\
& \text { of the binder testing for } \Delta T_{c} \\
& \text { Default value option - a maximum RASBR can } \\
& \text { be used in lieu of testing } \\
& \text { - RASBR } \leq 0.10
\end{aligned}
$$

Alternate Loose Mix Aging Procedure Mixture Extraction Procedure

- Individual mixes are fabricated
- Loose mix is conditioned at $135^{\circ} \mathrm{C}$ for 24 hours
- Uncovered pan at a depth of 25 to 50 mm placed in a
forced-draft oven with no stirring
- Mix is then extracted, the binder recovered
- The recovered binder is tested to determine $\Delta \mathrm{T}_{\mathrm{c}}$
- $\Delta \mathrm{T}_{\mathrm{c}}$ must be greater than or equal to $-5.0^{\circ} \mathrm{C}$, and
the appropriate PG grade must be met
Summary
- Revised PP 78
- Increased minimum VMA to address issue of
binder quantity
- Used $\Delta \mathrm{T}_{\mathrm{c}}$ to address binder quality
- Recovered binder is PAV aged for 40 hours
- Criteria: $\Delta \mathrm{T}_{\mathrm{c}} \geq-5.0^{\circ} \mathrm{C}$
- Added loose mix aging $\left(135^{\circ} \mathrm{C}\right.$ for 24 hours) as
an alternate in the appendix
- Criteria: $\Delta \mathrm{T}_{\mathrm{c}} \geq-5.0^{\circ} \mathrm{C}$
- Revised PP 78 sent out to ETG for review
- A few typos need to be corrected
- Need ETG green light
- Forward to AASHTO TS 2d
- Declare victory - for now...
- Need to get a new Task Team Chair

[^0]

AASHTO PP 78 Proposed Revisions
 FHWA Mixture ETG - RAS Taskforce
 April 2016
 Commentary to Changes

SCOPE: Nationally the use of reclaimed asphalt shingles (RAS) is increasing. The newly reissued provisional practice (PP 78-14) and provisional specification (MP 23-14) for RAS, while improved over previous versions, still had a number of issues that needed resolution. Consequently, the FHWA Mixture ETG formed a RAS Taskforce to evaluate PP 78 and MP 23 and prepare suggested changes for ETG consideration. The Taskforce included Jim Musselman (FDOT - Chair), Tim Aschenbrener (FHWA - Co-Chair), Lee Gallivan (Consultant), Audrey Copeland (NAPA), Danny Gierhart (AI), Gerry Huber (Heritage), John D’Angelo (Consultant), Randy West (NCAT), Ron Sines (Oldcastle), Richard Willis (NCAT), Tim Ramirez (PennDOT), and Hassan Tabatabaee (Cargill).

The goal of the taskforce was to review the two RAS provisional standards, identify areas in need of improvement, make subsequent recommendations to the Asphalt Mixture and Binder ETGs, and then move those recommendations forward to the AASHTO Subcommittee on Materials Technical Section for their consideration. Three specific areas that needed to be addressed included: binder availability factors, binder grade adjustments and a methodology to address both RAP and RAS.

ACTION: The RAS Taskforce reviewed available and emerging research, held multiple teleconferences (including teleconferences with representatives of the FHWA Asphalt Binder ETG), and then prepared an updated version of PP 78 based on the inclusion of new information. MP 23-14 did not require any changes. This document provides a commentary to changes proposed by the RAS Taskforce to the Asphalt Mixture and Binder ETGs.

AASHTO PP 078 - Standard Practice for Design Considerations When Using Reclaimed Asphalt Shingles (RAS) in Asphalt Mixtures

- Editorial Updates
- Included "by weight of aggregate" when referencing typical agency limitations on allowable amounts of RAS.
- Binder Availability Factor - The binder availability factor was originally included to assure that if not all of the asphalt binder in the RAS was effective (or available), that there would still be enough total binder in the asphalt mixture to provide good performance. In order to address this issue of binder quantity, the minimum VMA requirement for mixtures containing RAS (as specified in AASHTO M 323) should be increased by $+0.1 \%$ for every 1% RAS by weight of total aggregate. This change will
result in additional asphalt binder being added to the mixture, which will help to improve the mixture's durability. The risk of rutting due to the additional binder will be minimized due to the increased stiffness of the RAS binder and angularity of the RAS aggregate.
- Binder Grade Adjustments - In order to address the issue of binder quality in mixtures that contain RAS, PP 78-14 recommended binder grade adjustments based on the total amount of RAS binder in the mixture. Rather than take this approach, the embrittlement of the blended binder should be evaluated. An estimation of the brittleness can be determined from the Bending Beam Rheometer (BBR) binder test that measures both stiffness and relaxation. The binder stiffness (S) is calculated from the measured beam deflection at 60 seconds, and the relaxation (m-value) is measured as the slope of the deflection curve at 60 seconds. The m-value reflects the ability of the binder to relax stress to prevent cracking as the load is applied. Several studies have related the combination of stiffness and m-value properties to cracking performance. As a binder ages its stiffness (S) increases and its ability to relax (m-value) decreases. Studies have shown the relaxation (m-value) will deteriorate at a faster rate than the stiffness (S) will increase. The impact of this differential aging can be seen as a spread in the failure grade for stiffness (temperature at which the stiffness reaches 300 MPa) and the failure grade for relaxation (temperature at which m -value reaches 0.300). This differential aging is typically expressed as $\Delta \mathrm{T}_{\mathrm{c}}$, which is determined as follows:

$$
\Delta \mathrm{T}_{\mathrm{c}}=\text { Stiffness critical temp }(\mathrm{S})-\text { the Relaxation critical temp (m-value) }
$$

Separate research done by Mike Anderson and Tom Bennert have indicated that when $\Delta \mathrm{T}_{\mathrm{c}}$ is less than or equal to $-5.0^{\circ} \mathrm{C}$ there is a significant loss of cracking resistance. Additional work has indicated that when determining $\Delta \mathrm{T}_{\mathrm{c}}$, use material that has been PAV aged per AASHTO R 28, with the exception that the temperature and air pressure inside the pressure vessel is maintained for $40 \mathrm{~h} \pm 10 \mathrm{~min}$.

Using the $\Delta \mathrm{T}_{\mathrm{c}}$ approach, there are two methods of determining the maximum amount of RAS material that can be used in an asphalt mixture:

1. The agency develops tiers for RAS use on a regional or statewide basis based on the "Binder Blending Procedure" where they extract and recover typical RAS binders and blend them with typical softer asphalts and/or rejuvenating agents, and then test the blended binders to determine $\Delta \mathrm{T}_{\mathrm{c}}$ and set the allowable tiers based on the criteria that $\Delta \mathrm{T}_{\mathrm{c}}$ must be greater than or equal to $-5.0^{\circ} \mathrm{C}$.
2. The agency evaluates individual mixtures and limits RAS use based on the "Mixture Extraction Procedure" where the agency extracts and recovers the binder from each mixture that contains RAS and then determines ΔT_{c} and uses the criteria that $\Delta \mathrm{T}_{\mathrm{c}}$ must be greater than or equal to $-5.0^{\circ} \mathrm{C}$.

A default value is provided in a Note for agencies that do not desire to conduct the testing. Additionally, it is noted that mixture performance tests would be acceptable in lieu of testing for $\Delta \mathrm{T}_{\mathrm{c}}$.

- Methodology to address a blend of RAP and RAS - For cases where both RAP and RAS are used in a mixture, $\Delta \mathrm{T}_{\mathrm{c}}$ should be evaluated along with the Performance Grade of the binder, either by following the Binder Blending Procedure or the Mixture Extraction Procedure as described above.

Guidance is provided in a Note for combining RAP and RAS binder ratios for agencies that do not desire to conduct the testing.

- Appendix X1 Alternative Loose Mix Aging Procedure - An alternative to the binder aging in the PAV as described above is to age the mixture prior to recovering the binder. Data from several researchers has shown that 24 hours of loose mix aging equates to approximately 40 hours of PAV aging.

Summary:

- The binder availability factor is deleted from PP 78 and replaced by an increase in the minimum VMA by 0.1% for each 1% addition of RAS. This will address the issue of binder quantity in the mixture.
- Binder grade adjustments based on a table are deleted from PP 78 and replaced by either 1) setting allowable RAS tiers based on extracting, recovering, blending and testing typical RAS binders to determine $\Delta \mathrm{T}_{\mathrm{c}}$, or 2) by extracting, recovering, and testing binders from mixes containing RAS to determine $\Delta \mathrm{T}_{\mathrm{c}} . \Delta \mathrm{T}_{\mathrm{c}}$ must be greater than or equal to $5.0^{\circ} \mathrm{C}$ and the binder must meet the required Performance Grade. This will address the issue of binder quality in mixtures that contain RAS.
- For cases where both RAP and RAS are used in a mixture, $\Delta \mathrm{T}_{\mathrm{c}}$ should be evaluated for the complete blend, either by following the Binder Blending Procedure or the Mixture Extraction Procedure.
- Notes are provided for guidance for those states that do not desire to conduct this testing. Further, mixture performance tests would be acceptable in lieu of testing for $\Delta \mathrm{T}_{\mathrm{c}}$.

[^0]: Florida Department of Transportation

